

DIAGNOSTIC POTENTIAL OF ERGOREFLEX ACTIVITY IN ASSESSING HEART FAILURE SEVERITY AND DYNAMIC EVALUATION PHYSICAL REHABILITATION EFFECTIVENESS IN HEART FAILURE PATIENTS

Tatiana Lelyavina,¹

¹ Fsb National Medical Researge Center Named after V.A. Almazov; Heart Failure; Cardiology

Background:

The degree of ergoreflex activity (ERF) reflects severity heart failure myopathy.

<u>Aim</u>:

To determine the diagnostic potential of ERF activity in relation to heart failure severity assessment and assessment of physical rehabilitation (PR) effectiveness dynamic in HF patients.

<u>Methods</u>:

297 HF patients III Class, 55 years old (37;63), BMI – 22(21;26)kg/m2, LVEF – 33 (19;39)% were examined. Patients were divided into 2 groups performing (FR) of varying intensity for 9 months. In the main group (MG), 237 patients performed training walking daily for 60 minutes at a speed set at 95% of the speed reached at the lactate threshold (LT). 60 patients of the control group (KG) performed training walking three times a week at a speed registered at 55% V02peak. ERF activity was evaluated according to a standardized method using the 0xycon Pro equipment (Jaeger, Germany). CRT was performed on a treadmill model: GE Medical Systems Information Technologies using 0xycon Pro equipment (Jaeger, Germany). All patients underwent a general clinical blood test. The number of shaped blood elements was determined on automatic hematological analyzer SISMEX XT-1800. The data obtained were processed using Microsoft Excel, Statistica for Windows 10.0 application programs, the differences were considered significant at a significance level of p<0.05.To study the relationship of quantitative parameters, the Spearman correlation coefficient was calculated, estimating the measure of the linear relationship between the features.

<u>Results</u>:

After the course of PR, HF severity Cecreased to II Class in 75% MG patients, in 44% KG patients (p= 0.003).VO2LT in MG and KG increased by 24% and 15% (p=0.001), respectively; and VO2peak - by 45% and 17%, respectively (p=0.005). Initially, direct links were revealed between the initial

ERF activity (according to Δ VE) and VO2peak (r=-0.67, p=0.001), ERF (according to Δ VE) and (VO2LT) (r=-0.72, p=0.001), ERF (according to Δ VE) and the absolute number of peripheral blood monocytes (r=0.42, p=0.02), and the ratio of neutrophils and leukocytes (r=0.4, p=0.03). The association of ERF with HF etiology (r=0.2, p=0.05), sex (r=0.18, p=0.06), age (r=0.21, p=0.03), LVL (r=0.22, p=0.05) was not revealed. After training, MG patients registered a more pronounced decrease in ERF activity compared to KG patients: in terms of DAP - by 40%, in VE - in MG by 53%, in VC02 - by 38%, and in KG - by 21%, 23% and 15%, respectively (pDAP= 0.002, pVE = 0.001, pVC02 = 0.04) (Table 1). After PR, when in some HF patients NYHA Class fell to II, revealed a direct association between ERF (for Δ VE) and NYHA Class (r=-0.57, p=0.01) and between ERF activity (for Δ VE), and VO2LT (r=-0.55, p=0.001), and VO2peak (r=0.49, p=0.001), and monocytes content (r=0.63, p=0.01). In MG significantly more decreased the severity of systemic inflammation than in CG (table 1).

<u>Table 1</u>

Dynamics of HF severity, physical performance, ERF activity and systemic inflammation

Group	MG		CG		р	
	initially	9 months	initially	9 months	р _{мб-сб}	р _{мб-}
					initially	CG9months
Indicator						
VO _{2LT} , Me [LQ;UQ]	8,4[6,5;9,9]	10,3	8,5	9,5 [7,6;10.7]	p=0,07	p=0,001
		[8.9;12,5]	[6,6;U10.1]			
VO _{2peaк} , Me [LQ;UQ]	14.4 [11.1;17,1]	18	13,8	Me [LQ;UQ]	p=0,1	p=0,005
		[15,9;24,7]	[11,6;16,5]			
ERF activity						
$(\Delta DAP1- \Delta DAP2), mm.Hg,$	18 [12;36]	18 [12;35]	10 [7;16]	16 [12;32]	p=0,053	p=0,02
Me [LQ;UQ]						
$(\Delta V_{E}1- \Delta V_{E}2)$, L/min, Me	9 [6,3;15,7]	3,4 [2;6]	8,7 [6,5;15]	7,1[5,4;14]	p=0,05	p=0,001
[LQ;UQ]						
$(\Delta V CO_2 1 - \Delta V CO_2 2),$	163 [99;313]	101 [75;178]	170[107;298	143 [95;284]	p=0,2	p=0,04
ml/min/kg, Me [LQ;UQ]]			
Systemic inflammation activity						
Leukocytes, 10 ⁹ /L, Me	8.31[6,1;9,67]	6,35	8,15	8,25	p=0,066	p=0,01
[LQ;UQ]		[4,32;6,98]	[6,55;9,53]	[6,55;9,98]		
Monocytes, 10 ⁹ /L. Me	0,81	0,64[0,58:	0,8	0,77	p=0,09	p=0,
[LQ;UQ]	[0,75;0,93]	0,76]	[0,75;0,92]	[0,73;0,87]		

<u>Note</u>: Me is the median, LQ is the lower quartile, UQ is the upper quartile, VO2LT - oxygen volume absorbed at the LT level, VO2peak - oxygen volume absorbed at exercise peak, Δ - studied parameters dynamics, VE - minute ventilation volume, DBP - diastolic blood pressure, VCO2 - carbon dioxide released volume.

Conclusions: 1. PR calculated on LT basis contributed more to a decrease HF severity, increase in VO2peak, a decrease in ergoreflex activity and systemic inflammation than training calculated on 55% VO2peak basis. 2. There is a diagnostic potential of ergoreflex activity in relation to the assessment of heart failure severity and the dynamic assessment of physical rehabilitation effectiveness in HF patients.